Anisotropic Convection Model for the Earth's Mantle
نویسندگان
چکیده
The paper presents a theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including the folding and kinking of multi-layered visco-elastic rock (Mühlhaus et al. [1],[2]). The orientation of slip planes in the context of crystallographic slip is determined by the normal vector — the director — of these surfaces. The model is applied to simulate anisotropic mantle convection. We compare the evolution of flow patterns , Nusselt number and director orientations for isotropic and anisotropic rheologies. In the simulations we utilize two different finite element methodologies: The Lagrangian Integration Point Method Moresi et al [8] and an Eulerian formulation, which we implemented into the finite element based pde solver Fastflo (www.cmis.csiro.au/Fastflo/). The reason for utilizing two different finite element codes was firstly to study the influence of an anisotropic power law rheology which currently is not implemented into the Lagrangian Integration point scheme [8]and secondly to study the numerical performance of Eulerian (Fastflo)and Lagrangian integration schemes [8]. It turned out that whereas in the Lagrangian method the Nusselt number vs time plot reached only a quasi steady state where the Nusselt number oscillates around a steady state value the Eulerian scheme reaches exact steady states and produces a high degree of alignment (director orientation locally orthogonal to velocity vector almost everywhere in the computational domain). In the simulations emergent anisotropy was strongest in terms of modulus contrast in the up and down-welling plumes. Mechanisms for anisotropic material behavior in the mantle dynamics context are discussed by Christensen [3]. The dominant mineral phases in the mantle generally do not exhibit strong elastic anisotropy but they still may be oriented by the convective flow. Thus viscous anisotropy (the main focus of this paper) may or may not correlate with elastic or seismic anisotropy.
منابع مشابه
Inferences on flow at the base of Earth's mantle based on seismic anisotropy.
We applied global waveform tomography to model radial anisotropy in the whole mantle. We found that in the last few hundred kilometers near the core-mantle boundary, horizontally polarized S-wave velocities (VSH) are, on average, faster (by approximately 1%) than vertically polarized S-wave velocities (VSV), suggesting a large-scale predominance of horizontal shear. This confirms that the D" re...
متن کاملSeismic anisotropy: tracing plate dynamics in the mantle.
Elastic anisotropy is present where the speed of a seismic wave depends on its direction. In Earth's mantle, elastic anisotropy is induced by minerals that are preferentially oriented in a directional flow or deformation. Earthquakes generate two seismic wave types: compressional (P) and shear (S) waves, whose coupling in anisotropic rocks leads to scattering, birefringence, and waves with hybr...
متن کاملMantle dynamics and seismic anisotropy
a r t i c l e i n f o Keywords: seismic anisotropy mantle flow geodynamic modeling shear wave splitting surface wave analysis mantle convection Observations of seismic anisotropy yield some of the most direct constraints available on both past and present-day deformation in the Earth's mantle. Insight into the character of mantle flow can also be gained from the geodynamical modeling of mantle ...
متن کاملCatastrophic Overturn of the Earth's Mantle Driven by Multiple Phase Changes and Internal Heat Generation
•. The effects of phase changes and strong internal heat generation may combine to bring about brief, but extremely intense pisodes of rapid thermal convection i the Earth's mantle. Numerical calculations using realistic thermodynamic properties for the exothermic Olivine --+ Spinel and endothermic Spinel ---> Perovskite + Magnesiowustite phase transitions suggest he transition region of the Ea...
متن کاملPaleo-structure of the Earth’s Mantle: Derivation from Fluid Dynamic Inverse Theory
Mantle convection is vital to our Earth system. The relentless deformation produced inside the Earth's mantle by slow, viscous creep has a far greater impact on our planet than might be immediately evident. Continuously reshaping the Earth's surface, mantle convection provides the enormous driving forces necessary to support large-scale horizontal motion in the form of plate tectonics and the a...
متن کامل